

Polynomial, Equation, Factoring

Name _____ Date ____

Given a second-degree equation, solve it by factoring the trinomial first.

$$(1) \quad x^2 + 19x + 90 = 0$$

$$(2) \quad x^2 - 14x + 40 = 0$$

(3)
$$x^2 - 7x = 0$$

$$(4) \quad x^2 + x - 6 = 0$$

$$(5) \quad x^2 - 14x + 48 = 0$$

(6)
$$x^2 + 12x + 36 = 0$$

$$(7) \quad x^2 + 5x - 14 = 0$$

$$(8) \quad x^2 + 7x + 6 = 0$$

$$(9) \quad x^2 + 5x - 36 = 0$$

$$(10) \quad x^2 - 7x - 30 = 0$$

$$(11) \quad x^2 - 6x - 7 = 0$$

$$(12) \quad x^2 + 4x - 32 = 0$$

Answers

Given a second-degree equation, solve it by factoring the trinomial first.

(1)
$$x^2 + 19x + 90 = 0$$

 $(x+9)(x+10) = 0$
 $x = -9, x = -10$

(2)
$$x^2 - 14x + 40 = 0$$

 $(x - 4)(x - 10) = 0$
 $x = 4, x = 10$

(3)
$$x^2 - 7x = 0$$

 $(x+0)(x-7) = 0$
 $x = 0, x = 7$

(4)
$$x^2 + x - 6 = 0$$

 $(x - 2)(x + 3) = 0$
 $x = 2, x = -3$

(5)
$$x^2 - 14x + 48 = 0$$

 $(x-6)(x-8) = 0$
 $x = 6, x = 8$

(6)
$$x^2 + 12x + 36 = 0$$

 $(x+6)(x+6) = 0$
 $x = -6, x = -6$

(7)
$$x^2 + 5x - 14 = 0$$

 $(x+7)(x-2) = 0$
 $x = -7, x = 2$

(8)
$$x^{2} + 7x + 6 = 0$$

 $(x+6)(x+1) = 0$
 $x = -6, x = -1$

(9)
$$x^2 + 5x - 36 = 0$$

 $(x-4)(x+9) = 0$
 $x = 4, x = -9$

(10)
$$x^2 - 7x - 30 = 0$$

 $(x - 10)(x + 3) = 0$
 $x = 10, x = -3$

(11)
$$x^2 - 6x - 7 = 0$$

 $(x - 7)(x + 1) = 0$
 $x = 7, x = -1$

(12)
$$x^2 + 4x - 32 = 0$$

 $(x+8)(x-4) = 0$
 $x = -8, x = 4$